Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 775
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 60, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637838

RESUMO

Methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" was recently defined based on methylation profiling and tSNE analysis of a series of 21 neuroepithelial tumors with predominant presence of a BCOR fusion and/or characteristic CNV breakpoints at chromosome 22q12.31 and chromosome Xp11.4. Clear diagnostic criteria are still missing for this tumor type, specially that BCOR/BCOR(L1)-fusion is not a consistent finding in these tumors despite being frequent and that none of the Heidelberger classifier versions is able to clearly identify these cases, in particular tumors with alternative fusions other than those involving BCOR, BCORL1, EP300 and CREBBP. In this study, we introduce a BCOR::CREBBP fusion in an adult patient with a right temporomediobasal tumor, for the first time in association with methylation class "CNS tumor with BCOR/BCOR(L1)-fusion" in addition to 35 cases of CNS neuroepithelial tumors with molecular and histopathological characteristics compatible with "CNS tumor with BCOR/BCOR(L1)-fusion" based on a comprehensive literature review and data mining in the repository of 23 published studies on neuroepithelial brain Tumors including 7207 samples of 6761 patients. Based on our index case and the 35 cases found in the literature, we suggest the archetypical histological and molecular features of "CNS tumor with BCOR/BCOR(L1)-fusion". We also present four adult diffuse glioma cases including GBM, IDH-Wildtype and Astrocytoma, IDH-Mutant with CREBBP fusions and describe the necessity of complementary molecular analysis in "CNS tumor with BCOR/BCOR(L1)-alterations for securing a final diagnosis.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Neoplasias Neuroepiteliomatosas , Adulto , Humanos , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/genética , Neoplasias Neuroepiteliomatosas/diagnóstico por imagem , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Metilação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteína de Ligação a CREB/genética
2.
Cell Mol Life Sci ; 81(1): 160, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564048

RESUMO

The androgen receptor (AR) is a primary target for treating prostate cancer (PCa), forming the bedrock of its clinical management. Despite their efficacy, resistance often hampers AR-targeted therapies, necessitating new strategies against therapy-resistant PCa. These resistances involve various mechanisms, including AR splice variant overexpression and altered activities of transcription factors like the glucocorticoid receptor (GR) and FOXA1. These factors rely on common coregulators, such as EP300/CREBBP, suggesting a rationale for coregulator-targeted therapies. Our study explores EP300/CREBBP acetyltransferase inhibition's impact on steroid receptor and FOXA1 signaling in PCa cells using genome-wide techniques. Results reveal that EP300/CREBBP inhibition significantly disrupts the AR-regulated transcriptome and receptor chromatin binding by reducing the AR-gene expression. Similarly, GR's regulated transcriptome and receptor binding were hindered, not linked to reduced GR expression but to diminished FOXA1 chromatin binding, restricting GR signaling. Overall, our findings highlight how EP300/CREBBP inhibition distinctively curtails oncogenic transcription factors' signaling, suggesting the potential of coregulatory-targeted therapies in PCa.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Receptores de Glucocorticoides/genética , Fatores de Transcrição , Cromatina , Acetiltransferases , Fator 3-alfa Nuclear de Hepatócito/genética , Proteína p300 Associada a E1A/genética , Proteína de Ligação a CREB/genética
3.
Funct Integr Genomics ; 24(2): 75, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600341

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally. Many herbal medicines and their bioactive compounds have shown anti-tumor properties. This study was conducted to examine the effect of psilostachyin C (PSC), a sesquiterpenoid lactone isolated from Artemisia vulgaris L., in the malignant properties of HCC cells. CCK-8, flow cytometry, wound healing, and Transwell assays revealed that 25 µM PSC treatment significantly suppressed proliferation, cell cycle progression, migration, and invasion of two HCC cell lines (Hep 3B and Huh7) while promoting cell apoptosis. Bioinformatics prediction suggests CREB binding protein (CREBBP) as a promising target of PSC. CREBBP activated transcription of GATA zinc finger domain containing 2B (GATAD2B) by binding to its promoter. CREBBP and GATAD2B were highly expressed in clinical HCC tissues and the acquired HCC cell lines, but their expression was reduced by PSC. Either upregulation of CREBBP or GATAD2B restored the malignant properties of HCC cells blocked by PSC. Collectively, this evidence demonstrates that PSC pocessess anti-tumor functions in HCC cells by blocking CREBBP-mediated transcription of GATAD2B.


Assuntos
Carcinoma Hepatocelular , Compostos Heterocíclicos com 3 Anéis , Neoplasias Hepáticas , Pironas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
4.
Zhonghua Er Ke Za Zhi ; 62(4): 351-356, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38527506

RESUMO

Objective: To investigate the phenotypes of Rubinstein-Taybi syndrome (RSTS) caused by variants in the CREBBP or EP300 gene, and the correlation between genotype and phenotype. Methods: This case series study was performed on pediatric patients who were referred to the Children's Hospital of Capital Institute of Pediatrics between January 2013 and July 2022. Both point variant and copy number deletion in CREBBP or EP300 gene were detected by whole exome sequencing, chromosomal microarray analysis, or copy number variation sequencing (CNV-seq). The variant categories were summarized and phenotype numbers were re-visited for RSTS patients. Based on variant types, the patients were divided into different groups (point variant or copy number deletion, EP300 or CREBBP point variant, and loss of function or missense variant). Phenotype counts between different groups were compared using the rank-sum test of two independent samples. Results: A total of 21 RSTS patients were recruited, including 12 males and 9 females, with ages ranging from 1 month to 14 years and 2 months. Among them, 67% (14/21) had point variants, and 33% (7/21) had copy number deletions. Out of these, 20 variants (95%) were de novo. Among 20 patients finishing phenotype count during re-visit, 95% (19/20) of the patients exhibited developmental delays before the age of 2 years. Additionally, 80% (16/20) of the patients had distinctive facial features. Considering phenotype count, no statistically significant difference was found between point variant (14 cases) and copy number deletion (6 cases) (5.0 (3.0, 7.0) vs. 5.0 (2.5, 5.3), Z=0.75, P=0.452), CREBBP (10 cases) and EP300 gene (4 cases) point variant (5.0 (3.8, 7.0) vs. 4.0 (2.0, 6.0), Z=1.14, P=0.253), and loss of function (9 cases) and missense (5 cases) variant (6.0 (4.5, 7.0) vs. 3.0 (2.5, 5.5), Z=1.54, P=0.121). Conclusions: Patients with RSTS primarily exhibit developmental delays in early childhood. Specific facial features serve as suggested signs of genetic testing. However, no significant genotype-phenotype correlation is found.


Assuntos
Síndrome de Rubinstein-Taybi , Masculino , Feminino , Criança , Humanos , Pré-Escolar , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/diagnóstico , Variações do Número de Cópias de DNA , Genótipo , Fenótipo , Testes Genéticos , Proteína de Ligação a CREB/genética , Mutação
5.
Acta Neuropathol Commun ; 12(1): 8, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216991

RESUMO

The fifth edition of the World Health Organization (WHO) classification of central nervous system (CNS) tumors introduced the new tumor type CNS tumor with BCOR internal tandem duplication (ITD), characterized by a distinct DNA methylation profile and peculiar histopathological features, including a circumscribed growth pattern, ependymoma-like perivascular pseudorosettes, microcystic pattern, absent or focal GFAP immunostaining, OLIG2 positivity, and BCOR immunoreactivity. We describe a rare case of a CNS tumor in a 45-year-old man with histopathological and immunohistochemical features overlapping the CNS tumor with BCOR internal tandem duplication (ITD) but lacking BCOR immunostaining and BCOR ITD. Instead, the tumor showed CREBBP::BCORL1 fusion and pathogenic mutations in BCOR and CREBBP, along with a DNA methylation profile matching the "CNS tumor with EP300:BCOR(L1) fusion" methylation class. Two CNS tumors with fusions between CREBBP, or its paralog EP300, and BCORL1, and approximately twenty CNS tumors with CREBBP/EP300::BCOR fusions have been reported to date. They exhibited similar ependymoma-like features or a microcystic pattern, along with focal or absent GFAP immunostaining, and shared the same DNA methylation profile. Given their morphological and epigenetic similarities, circumscribed CNS tumors with EP300/CREBBP::BCOR(L1) fusions and CNS tumors with BCOR ITD may represent variants of the same tumor type. The ependymoma-like aspect coupled with the lack of diffuse GFAP immunostaining and the presence of OLIG2 positivity are useful clues for recognizing these tumors in histopathological practice. The diagnosis should be confirmed after testing for BCOR(L1) gene fusions and BCOR ITD.


Assuntos
Neoplasias do Sistema Nervoso Central , Ependimoma , Masculino , Humanos , Pessoa de Meia-Idade , Neoplasias do Sistema Nervoso Central/genética , Mutação/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Proteína de Ligação a CREB/genética
6.
J Gene Med ; 26(1): e3591, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37721116

RESUMO

BACKGROUND: Intellectual disability (ID) can be associated with different syndromes such as Rubinstein-Taybi syndrome (RSTS) and can also be related to conditions such as metabolic encephalomyopathic crises, recurrent,with rhabdomyolysis, cardiac arrhythmias and neurodegeneration. Rare congenital RSTS1 (OMIM 180849) is characterized by mental and growth retardation, significant and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms, and an elevated risk of malignancies. Microdeletions and point mutations in the CREB-binding protein (CREBBP) gene, located at 16p13.3, have been reported to cause RSTS. By contrast, TANGO2-related metabolic encephalopathy and arrhythmia (TRMEA) is a rare metabolic condition that causes repeated metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias and encephalopathy with cognitive decline. Clinicians need more clinical and genetic evidence to detect and comprehend the phenotypic spectrum of this disorder. METHODS: Exome sequencing was used to identify the disease-causing variants in two affected families A and B from District Kohat and District Karak, Khyber Pakhtunkhwa. Affected individuals from both families presented symptoms of ID, developmental delay and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS: In the present study, two families (A and B) exhibiting various forms of IDs were enrolled. In Family A, exome sequencing revealed a novel missense variant (NM 004380.3: c.4571A>G; NP_004371.2: p.Lys1524Arg) in the CREBBP gene, whereas, in Family B, a splice site variant (NM 152906.7: c.605 + 1G>A) in the TANGO2 gene was identified. Sanger sequencing of both variants confirmed their segregation with ID in both families. The in silico tools verified the aberrant changes in the CREBBP protein structure. Wild-type and mutant CREBBP protein structures were superimposed and conformational changes were observed likely altering the protein function. CONCLUSIONS: RSTS and TRMEA are exceedingly rare disorders for which specific clinical characteristics have been clearly established, but more investigations are underway and required. Multicenter studies are needed to increase our understanding of the clinical phenotypes, mainly showing the genotype-phenotype associations.


Assuntos
Deficiência Intelectual , Rabdomiólise , Síndrome de Rubinstein-Taybi , Humanos , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/química , Deficiência Intelectual/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo , Rabdomiólise/genética , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/patologia
7.
Mol Oncol ; 18(2): 305-316, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864465

RESUMO

The phase III IMPACT study (UMIN000044738) compared adjuvant gefitinib with cisplatin plus vinorelbine (cis/vin) in completely resected epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC). Although the primary endpoint of disease-free survival (DFS) was not met, we searched for molecular predictors of adjuvant gefitinib efficacy. Of 234 patients enrolled in the IMPACT study, 202 patients were analyzed for 409 cancer-related gene mutations and tumor mutation burden using resected lung cancer specimens. Frequent somatic mutations included tumor protein p53 (TP53; 58.4%), CUB and Sushi multiple domains 3 (CSMD3; 11.8%), and NOTCH1 (9.9%). Multivariate analysis showed that NOTCH1 co-mutation was a significant poor prognostic factor for overall survival (OS) in the gefitinib group and cAMP response element binding protein (CREBBP) co-mutation for DFS and OS in the cis/vin group. In patients with NOTCH1 co-mutations, gefitinib group had a shorter OS than cis/vin group (Hazard ratio 5.49, 95% CI 1.07-28.00), with a significant interaction (P for interaction = 0.039). In patients with CREBBP co-mutations, the gefitinib group had a longer DFS than the cis/vin group, with a significant interaction (P for interaction = 0.058). In completely resected EGFR-mutated NSCLC, NOTCH1 and CREBBP mutations might predict poor outcome in patients treated with gefitinib and cis/vin, respectively.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Gefitinibe , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Pesquisa Translacional Biomédica , Receptores ErbB/genética , Cisplatino , Vinorelbina/uso terapêutico , Mutação/genética , Inibidores de Proteínas Quinases/efeitos adversos , Receptor Notch1/genética , Proteína de Ligação a CREB/genética
8.
Cell Rep ; 43(1): 113576, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38128530

RESUMO

Neuronal activity-dependent transcription plays a key role in plasticity and pathology in the brain. An intriguing question is how neuronal activity controls gene expression via interactions of transcription factors with DNA and chromatin modifiers in the nucleus. By utilizing single-molecule imaging in human embryonic stem cell (ESC)-derived cortical neurons, we demonstrate that neuronal activity increases repetitive emergence of cAMP response element-binding protein (CREB) at histone acetylation sites in the nucleus, where RNA polymerase II (RNAPII) accumulation and FOS expression occur rapidly. Neuronal activity also enhances co-localization of CREB and CREB-binding protein (CBP). Increased binding of a constitutively active CREB to CBP efficiently induces CREB repetitive emergence. On the other hand, the formation of histone acetylation sites is dependent on CBP histone modification via acetyltransferase (HAT) activity but is not affected by neuronal activity. Taken together, our results suggest that neuronal activity promotes repetitive CREB-CRE and CREB-CBP interactions at predetermined histone acetylation sites, leading to rapid gene expression.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Histonas , Humanos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Histonas/metabolismo , DNA/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Expressão Gênica , Neurônios/metabolismo , Acetilação , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
9.
J Bone Miner Res ; 38(12): 1885-1899, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37850815

RESUMO

CREB-binding protein (CBP) (CREBBP) and p300 (EP300) are multifunctional histone acetyltransferases (HATs) with extensive homology. Germline mutations of CBP or p300 cause skeletal abnormalities in humans and mice. However, the precise roles of CBP/p300 in bone homeostasis remain elusive. Here, we report that conditional knockout of CBP or p300 in osteoblasts results in reduced bone mass and strength due to suppressed bone formation. The HAT activity is further confirmed to be responsible for CBP/p300-mediated osteogenesis using A-485, a selective inhibitor of CBP/p300 HAT. Mechanistically, CBP/p300 HAT governs osteogenic gene expression in part through transcriptional activation of ß-catenin and inhibition of Stat1. Furthermore, acetylation of histone H3K27 and the transcription factor Foxo1 are demonstrated to be involved in CBP/p300 HAT-regulated ß-catenin and Stat1 transcription, respectively. Taken together, these data identify acetyltransferases CBP/p300 as critical regulators that promote osteoblast differentiation and reveal an epigenetic mechanism responsible for maintaining bone homeostasis. © 2023 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Proteína de Ligação a CREB , Fatores de Transcrição de p300-CBP , Animais , Humanos , Camundongos , Acetilação , beta Catenina/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Osteogênese/genética , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo , Fator de Transcrição STAT1/metabolismo
10.
Sci Rep ; 13(1): 16094, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752231

RESUMO

The microphthalmia-associated transcription factor (MITF) is one of four closely related members of the MiT/TFE family (TFEB, TFE3, TFEC) that regulate a wide range of cellular processes. MITF is a key regulator of melanocyte-associated genes, and essential to proper development of the melanocyte cell lineage. Abnormal MITF activity can contribute to the onset of several diseases including melanoma, where MITF is an amplified oncogene. To enhance transcription, MITF recruits the co-activator CREB-binding protein (CBP) and its homolog p300 to gene promoters, however the molecular determinants of their interaction are not yet fully understood. Here, we characterize the interactions between the C-terminal MITF transactivation domain and CBP/p300. Using NMR spectroscopy, protein pulldown assays, and isothermal titration calorimetry we determine the C-terminal region of MITF is intrinsically disordered and binds with high-affinity to both TAZ1 and TAZ2 of CBP/p300. Mutagenesis studies revealed two conserved motifs within MITF that are necessary for TAZ2 binding and critical for MITF-dependent transcription of a reporter gene. Finally, we observe the transactivation potential of the MITF C-terminal region is reliant on the N-terminal transactivation domain for function. Taken together, our study helps elucidate the molecular details of how MITF interacts with CBP/p300 through multiple redundant interactions that lend insight into MITF function in melanocytes and melanoma.


Assuntos
Proteína de Ligação a CREB , Melanoma , Humanos , Proteína de Ligação a CREB/genética , Fator de Transcrição Associado à Microftalmia/genética , Ativação Transcricional , Oncogenes , Melanoma/genética
11.
FASEB J ; 37(9): e22996, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37566526

RESUMO

Myocardial ischemia/reperfusion injury (MIRI) is a prevalent condition associated with numerous critical clinical conditions. miR-322 has been implicated in MIRI through poorly understood mechanisms. Our preliminary analysis indicated potential interaction of CREB-binding protein (CBP), a transcriptional coactivator and acetyltransferase, with HIF-1α/ß-catenin, which might regulate miR-322 expression. We, therefore, hypothesized that CBP/HIF-1α/ß-catenin/miR-322 axis might play a role in MIRI. Rat cardiomyocytes subjected to oxygen-glucose deprivation /reperfusion (OGD/R) and Langendorff perfused heart model were used to model MIRI in vitro and in vivo, respectively. We used various techniques such as CCK-8 assay, transferase dUTP nick end labeling staining, western blotting, RT-qPCR, chromatin immunoprecipitation (ChIP), dual-luciferase assay, co-immunoprecipitation (Co-IP), hematoxylin and eosin staining, and TTC staining to assess cell viability, apoptosis, and the levels of CBP, HIF-1α, ß-catenin, miR-322, and acetylation. Our results indicate that OGD/R in cardiomyocytes decreased CBP/HIF-1α/ß-catenin/miR-322 expression, increased cell apoptosis and cytokines, and reduced cell viability. However, overexpression of CBP or miR-322 suppressed OGD/R-induced cell injury, while knockdown of HIF-1α/ß-catenin further exacerbated the damage. HIF-1α/ß-catenin bound to miR-322 promoter to promote its expression, while CBP acetylated HIF-1α/ß-catenin for stabilization. Overexpression of CBP attenuated MIRI in rats by acetylating HIF-1α/ß-catenin to stabilize their expression, resulting in stronger binding of HIF-1α/ß-catenin with the miR-322 promoter and subsequent increased miR-322 levels. Therefore, activating CBP/HIF-1α/ß-catenin/miR-322 signaling may be a potential approach to treat MIRI.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , Animais , Ratos , Apoptose , beta Catenina/genética , beta Catenina/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo
12.
Nat Commun ; 14(1): 4103, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460559

RESUMO

Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Proteína de Ligação a CREB/genética , Acetilação , Epigênese Genética , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(28): e2217405120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37406095

RESUMO

Early placenta development involves cytotrophoblast differentiation into extravillous trophoblast (EVT) and syncytiotrophoblast (STB). Defective trophoblast development and function may result in severe pregnancy complications, including fetal growth restriction and pre-eclampsia. The incidence of these complications is increased in pregnancies of fetuses affected by Rubinstein-Taybi syndrome, a developmental disorder predominantly caused by heterozygous mutations in CREB-binding protein (CREBBP) or E1A-binding protein p300 (EP300). Although the acetyltransferases CREBBP and EP300 are paralogs with many overlapping functions, the increased incidence of pregnancy complications is specific for EP300 mutations. We hypothesized that these complications have their origin in early placentation and that EP300 is involved in that process. Therefore, we investigated the role of EP300 and CREBBP in trophoblast differentiation, using human trophoblast stem cells (TSCs) and trophoblast organoids. We found that pharmacological CREBBP/EP300 inhibition blocks differentiation of TSCs into both EVT and STB lineages, and results in an expansion of TSC-like cells under differentiation-inducing conditions. Specific targeting by RNA interference or CRISPR/Cas9-mediated mutagenesis demonstrated that knockdown of EP300 but not CREBBP, inhibits trophoblast differentiation, consistent with the complications seen in Rubinstein-Taybi syndrome pregnancies. By transcriptome sequencing, we identified transforming growth factor alpha (TGFA, encoding TGF-α) as being strongly upregulated upon EP300 knockdown. Moreover, supplementing differentiation medium with TGF-α, which is a ligand for the epidermal growth factor receptor (EGFR), likewise affected trophoblast differentiation and resulted in increased TSC-like cell proliferation. These findings suggest that EP300 facilitates trophoblast differentiation by interfering with at least EGFR signaling, pointing towards a crucial role for EP300 in early human placentation.


Assuntos
Pré-Eclâmpsia , Síndrome de Rubinstein-Taybi , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Fator de Crescimento Transformador alfa , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/metabolismo , Diferenciação Celular , Proteína p300 Associada a E1A/genética , Proteína de Ligação a CREB/genética , Receptores ErbB
14.
Mol Genet Genomic Med ; 11(9): e2192, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37162176

RESUMO

BACKGROUND: Rubinstein-Taybi syndrome (RSTS) is a rare autosomal-dominant genetic disease caused by variants of CREBBP (RSTS1) or EP300 (RSTS2) gene. RSTS2 is much less common, with less than 200 reported cases worldwide to date. More reports are still needed to increase the understanding of its clinical manifestations and genetic characteristics. METHODS: The clinical data of two children with RSTS2 were analyzed retrospectively, and their clinical manifestations, auxiliary examinations, and mutational spectrum were summarized. Liquid chromatography-tandem mass spectrometer (LC-MS/MS) technology was used to detect the levels of steroid hormones if possible. RESULTS: After analyzing the clinical and genetic characteristics of two boys with RSTS2 (0.7 and 10.4 years old, respectively) admitted in our hospital, we identified two novel heterozygous variants in the EP300 exon 22 (c.3750C > A, p. Cys1250*, pathogenic; c.1889A > G, p. Tyr630Cys, likely pathogenic), which could account for their phenotype. In addition to common clinical manifestations such as special facial features, microcephaly, growth retardation, intellectual disability, speech delay, congenital heart defect, recurrent respiratory infections, and immunodeficiency, we found one of them had a rare feature of adrenal insufficiency, and LC-MS/MS detection showed an overall decrease in steroid hormones. CONCLUSION: In our study, we identified two novel variants in the EP300 exon 22, and for the first time, we reported a case of RSTS2 associated with adrenal insufficiency, which will enrich the clinical and mutational spectrum of this syndrome.


Assuntos
Síndrome de Rubinstein-Taybi , Criança , Humanos , Lactente , Masculino , Cromatografia Líquida , Proteína de Ligação a CREB/genética , Proteína p300 Associada a E1A/genética , População do Leste Asiático , Estudos de Associação Genética , Estudos Retrospectivos , Síndrome de Rubinstein-Taybi/diagnóstico , Síndrome de Rubinstein-Taybi/genética , Espectrometria de Massas em Tandem
15.
J Alzheimers Dis ; 92(4): 1229-1239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36872777

RESUMO

BACKGROUND: The aging Mexican American (MA) population is the fastest growing ethnic minority group in the US. MAs have a unique metabolic-related risk for Alzheimer's disease (AD) and mild cognitive impairment (MCI), compared to non-Hispanic whites (NHW). This risk for cognitive impairment (CI) is multifactorial involving genetics, environmental, and lifestyle factors. Changes in environment and lifestyle can alter patterns and even possibly reverse derangement of DNA methylation (a form of epigenetic regulation). OBJECTIVE: We sought to identify ethnicity-specific DNA methylation profiles that may be associated with CI in MAs and NHWs. METHODS: DNA obtained from peripheral blood of 551 participants from the Texas Alzheimer's Research and Care Consortium was typed on the Illumina Infinium® MethylationEPIC chip array, which assesses over 850K CpG genomic sites. Within each ethnic group (N = 299 MAs, N = 252 NHWs), participants were stratified by cognitive status (control versus CI). Beta values, representing relative degree of methylation, were normalized using the Beta MIxture Quantile dilation method and assessed for differential methylation using the Chip Analysis Methylation Pipeline (ChAMP), limma and cate packages in R. RESULTS: Two differentially methylated sites were significant: cg13135255 (MAs) and cg27002303 (NHWs) based on an FDR p < 0.05. Three suggestive sites obtained were cg01887506 (MAs) and cg10607142 and cg13529380 (NHWs). Most methylation sites were hypermethylated in CI compared to controls, except cg13529380 which was hypomethylated. CONCLUSION: The strongest association with CI was at cg13135255 (FDR-adjusted p = 0.029 in MAs), within the CREBBP gene. Moving forward, identifying additional ethnicity-specific methylation sites may be useful to discern CI risk in MAs.


Assuntos
Proteína de Ligação a CREB , Disfunção Cognitiva , Metilação de DNA , Americanos Mexicanos , Brancos , Idoso , Humanos , Disfunção Cognitiva/sangue , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/etnologia , Disfunção Cognitiva/genética , Proteína de Ligação a CREB/sangue , Proteína de Ligação a CREB/genética , Metilação de DNA/genética , Epigênese Genética/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/etnologia , Predisposição Genética para Doença/genética , Americanos Mexicanos/genética , Grupos Minoritários , Fatores de Risco , Brancos/genética
17.
BMJ Case Rep ; 16(3)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977512

RESUMO

Acute myeloid leukemia (AML) with t(8;16) is a rare cytogenetic abnormality that presents unique characteristics such as hemophagocytosis, disseminated intravascular coagulation, leukemia cutis and varying levels of CD45 expression. It is more common in women and usually associated with prior cytotoxic therapies, accounting for <0.5% of all AML cases. We present a case of de novo t(8;16) AML with FLT3-TKD mutation who relapsed after initial induction and consolidation. Mitelman database analysis reveals only 175 cases with this translocation, majority of which are M5 (54.3%) and M4 (21.1%) AML. Our review reveals very poor prognosis with overall survival ranging from 4.7 to 18.2 months. She also developed Takotsubo cardiomyopathy after receiving 7+3 induction regimen. Our patient died in 6 months from the date of diagnosis. Although a rare occurrence, it has been discussed in literature to identify t(8;16) as a separate subtype of AML due to unique characteristics.


Assuntos
Leucemia Mieloide Aguda , Cardiomiopatia de Takotsubo , Humanos , Feminino , Cardiomiopatia de Takotsubo/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Translocação Genética , Aberrações Cromossômicas , Prognóstico , Mutação , Tirosina Quinase 3 Semelhante a fms/genética , Histona Acetiltransferases/genética , Proteína de Ligação a CREB/genética
18.
Proc Natl Acad Sci U S A ; 120(11): e2218330120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893259

RESUMO

Heterozygous inactivating mutations of the KMT2D methyltransferase and the CREBBP acetyltransferase are among the most common genetic alterations in B cell lymphoma and co-occur in 40 to 60% of follicular lymphoma (FL) and 30% of EZB/C3 diffuse large B cell lymphoma (DLBCL) cases, suggesting they may be coselected. Here, we show that combined germinal center (GC)-specific haploinsufficiency of Crebbp and Kmt2d synergizes in vivo to promote the expansion of abnormally polarized GCs, a common preneoplastic event. These enzymes form a biochemical complex on select enhancers/superenhancers that are critical for the delivery of immune signals in the GC light zone and are only corrupted upon dual Crebbp/Kmt2d loss, both in mouse GC B cells and in human DLBCL. Moreover, CREBBP directly acetylates KMT2D in GC-derived B cells, and, consistently, its inactivation by FL/DLBCL-associated mutations abrogates its ability to catalyze KMT2D acetylation. Genetic and pharmacologic loss of CREBBP and the consequent decrease in KMT2D acetylation lead to reduced levels of H3K4me1, supporting a role for this posttranslational modification in modulating KMT2D activity. Our data identify a direct biochemical and functional interaction between CREBBP and KMT2D in the GC, with implications for their role as tumor suppressors in FL/DLBCL and for the development of precision medicine approaches targeting enhancer defects induced by their combined loss.


Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Animais , Humanos , Camundongos , Acetilação , Linfócitos B/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Centro Germinativo , Linfoma Folicular/genética , Linfoma Folicular/metabolismo , Linfoma Folicular/patologia , Linfoma Difuso de Grandes Células B/patologia , Mutação , Processamento de Proteína Pós-Traducional
19.
BMC Med Genomics ; 16(1): 24, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797748

RESUMO

BACKGROUND: Rubinstein-Taybi syndrome (RSTS) is an extremely rare autosomal dominant inheritable disorder caused by CREBBP and EP300 mutations, while atypical RSTS harbouring variant from the same genes but not obvious resembling RSTS. There are only a few cases of Menke-Hennekam syndrome (MKHK) with variant of exon 30 or 31 of CREBBP or EP300 gene have been reported that not resembling RSTS recent years. Atypical RSTS cannot be accurately classified as MKHK, nor is it easy to identify the obvious classic characteristics of RSTS. The clinical manifestations and genetic variation of atypical RSTS are not fully understood. CASE PRESENTATION: We present a Chinese core family with a girl had recurrent respiratory tract infection and developmental delay. The patient with language and motor mild development retardation, she has slight abnormal facial features, mild hirsutism and post-axial hexadactylia of left foot. Her cisterna magna is enlarged to connect with the fourth ventricle, and the ventricular system is enlarged. She has a malacia beside the posterior horn of the left lateral ventricle. The patient has primary low immunoglobulin G and A, but her level of immunoglobulin M content in blood is normal. The patient harbors a novel heterozygous frameshift variant of c.2499dupG in exon 14 of EP300 gene, that it is proved to de novo origin. The mutation is judged to be a pathogenic mutation, and it has high-grade pathogenic evidence. CONCLUSION: The clinical and genetic evaluation of this case corroborates that clinical features caused by c.2499dupG in exon 14 of EP300 are less marked than RSTS2 patient although it is difficult to establish an accurate genotype-phenotype correlation. Our additional case also helps to deepen the clinical and genetic spectrum in this disorder. The case provides a novel mutation of EP300 and enriches the phenotypes related with the gene. We have contributed new variation and disease information for guardians and doctors to broaden the knowledge about EP300-RSTS genotype and phenotype, this may contribute to ameliorate the health management of patients and improve the genetic counseling to the families.


Assuntos
Síndrome de Rubinstein-Taybi , Humanos , Feminino , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/patologia , População do Leste Asiático , Proteína de Ligação a CREB/genética , Mutação , Genótipo , Fenótipo , Proteína p300 Associada a E1A/genética
20.
Target Oncol ; 18(2): 269-285, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36826464

RESUMO

BACKGROUND: Patients with triple-negative breast cancer (TNBC) expressing the androgen receptor (AR) respond poorly to neoadjuvant chemotherapy, although AR antagonists have shown promising clinical activity, suggesting these tumors are AR-dependent. cAMP responsive element binding protein (CREB)-binding protein (CBP) and p300 are transcriptional co-activators for the AR, a key driver of AR+ breast and prostate cancer, and may provide a novel therapeutic target in AR+ TNBC. OBJECTIVES: The aim of this study was to determine the therapeutic potential of FT-6876, a new CBP/p300 bromodomain inhibitor, in breast cancer models with a range of AR levels in vitro and in vivo. METHODS: Effects of FT-6876 on the CBP/p300 pathway were determined by combining chromatin immunoprecipitation (ChIP) with precision run-on sequencing (PRO-seq) complemented with H3K27 acetylation (Ac) and transcriptional profiling. The antiproliferative effect of FT-6876 was also measured in vitro and in vivo. RESULTS: We describe the discovery of FT-6876, a potent and selective CBP/p300 bromodomain inhibitor. The combination of ChIP and PRO-seq confirmed the reduction in H3K27Ac at specific promoter sites concurrent with a decrease in CBP/p300 on the chromatin and a reduction in nascent RNA and enhancer RNA. This was associated with a time- and concentration-dependent reduction in H3K37Ac associated with a decrease in AR and estrogen receptor (ER) target gene expression. This led to a time-dependent growth inhibition in AR+ models, correlated with AR expression. Tumor growth inhibition was also observed in AR+ tumor models of TNBC and ER+ breast cancer subtypes with consistent pharmacokinetics and pharmacodynamics. CONCLUSION: Our findings demonstrate FT-6876 as a promising new CBP/p300 bromodomain inhibitor, with efficacy in preclinical models of AR+ breast cancer.


Assuntos
Receptores Androgênicos , Neoplasias de Mama Triplo Negativas , Masculino , Humanos , Receptores Androgênicos/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Ligação Proteica , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA